常用算法之:2、梯度下降_两参数 梯度下降-程序员宅基地

技术标签: 基础算法程序设计  

在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。

1. 梯度

    在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x0,y0)的具体梯度向量就是(∂f/∂x0, ∂f/∂y0)T.或者▽f(x0,y0),如果是3个参数的向量梯度,就是(∂f/∂x, ∂f/∂y,∂f/∂z)T,以此类推。

    那么这个梯度向量求出来有什么意义呢?他的意义从几何意义上讲,就是函数变化增加最快的地方。具体来说,对于函数f(x,y),在点(x0,y0),沿着梯度向量的方向就是(∂f/∂x0, ∂f/∂y0)T的方向是f(x,y)增加最快的地方。或者说,沿着梯度向量的方向,更加容易找到函数的最大值。反过来说,沿着梯度向量相反的方向,也就是 -(∂f/∂x0, ∂f/∂y0)T的方向,梯度减少最快,也就是更加容易找到函数的最小值。

     

2. 梯度下降与梯度上升

    在机器学习算法中,在最小化损失函数时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数,和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。

    梯度下降法和梯度上升法是可以互相转化的。比如我们需要求解损失函数f(θ)的最小值,这时我们需要用梯度下降法来迭代求解。但是实际上,我们可以反过来求解损失函数 -f(θ)的最大值,这时梯度上升法就派上用场了。

    下面来详细总结下梯度下降法。        

3. 梯度下降法算法详解

3.1 梯度下降的直观解释

    首先来看看梯度下降的一个直观的解释。比如我们在一座大山上的某处位置,由于我们不知道怎么下山,于是决定走一步算一步,也就是在每走到一个位置的时候,求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后继续求解当前位置梯度,向这一步所在位置沿着最陡峭最易下山的位置走一步。这样一步步的走下去,一直走到觉得我们已经到了山脚。当然这样走下去,有可能我们不能走到山脚,而是到了某一个局部的山峰低处。

    从上面的解释可以看出,梯度下降不一定能够找到全局的最优解,有可能是一个局部最优解。当然,如果损失函数是凸函数,梯度下降法得到的解就一定是全局最优解。

3.2 梯度下降的相关概念

    在详细了解梯度下降的算法之前,我们先看看相关的一些概念。

    1. 步长(Learning rate):步长决定了在梯度下降迭代的过程中,每一步沿梯度负方向前进的长度。用上面下山的例子,步长就是在当前这一步所在位置沿着最陡峭最易下山的位置走的那一步的长度。

    2.特征(feature):指的是样本中输入部分,比如样本(x0,y0),(x1,y1),则样本特征为x,样本输出为y。

    3. 假设函数(hypothesis function):在监督学习中,为了拟合输入样本,而使用的假设函数,记为hθ(x)。比如对于样本(xi,yi)(i=1,2,...n),可以采用拟合函数如下: hθ(x) = θ01x。

    4. 损失函数(loss function):为了评估模型拟合的好坏,通常用损失函数来度量拟合的程度。损失函数极小化,意味着拟合程度最好,对应的模型参数即为最优参数。在线性回归中,损失函数通常为样本输出和假设函数的差取平方。比如对于样本(xi,yi)(i=1,2,...n),采用线性回归,损失函数为:

                              

     其中     表示样本特征x的第i个元素,     表示样本输出y的第i个元素,       为假设函数。   

3.3 梯度下降的详细算法

    梯度下降法的算法可以有代数法和矩阵法(也称向量法)两种表示,如果对矩阵分析不熟悉,则代数法更加容易理解。不过矩阵法更加的简洁,且由于使用了矩阵,实现逻辑更加的一目了然。这里先介绍代数法,后介绍矩阵法。

 

3.3.1 梯度下降法的代数方式描述

    1. 先决条件: 确认优化模型的假设函数和损失函数。

    比如对于线性回归,假设函数表示为                      , 其中     (i = 0,1,2... n)为模型参数,      (i = 0,1,2... n)为每个样本的n个特征值。这个表示可以简化,我们增加一个特征     ,这样                 

    同样是线性回归,对应于上面的假设函数,损失函数为:

                                   

 

    2. 算法相关参数初始化:主要是初始化         ,算法终止距离   以及步长   。在没有任何先验知识的时候,我喜欢将所有的   初始化为0, 将步长初始化为1。在调优的时候再 优化。

    3. 算法过程:

      1)确定当前位置的损失函数的梯度,对于     ,其梯度表达式如下:

                   

      2)用步长乘以损失函数的梯度,得到当前位置下降的距离,即            对应于前面登山例子中的某一步。

      3)确定是否所有的     ,梯度下降的距离都小于   ,如果小于   ε则算法终止,当前所有的     (i=0,1,...n)即为最终结果。否则进入步骤4.

      4)更新所有的   ,对于     ,其更新表达式如下。更新完毕后继续转入步骤1.

                       

    下面用线性回归的例子来具体描述梯度下降。假设我们的样本是                                    ,

              损失函数如前面先决条件所述:

                            

    则在算法过程步骤1中对于     的偏导数计算如下:   

                                    

    由于样本中没有     上式中令所有的      为1.

    步骤4中     的更新表达式如下:

                                     

    从这个例子可以看出当前点的梯度方向是由所有的样本决定的,加    是为了好理解。由于步长也为常数,他们的乘机也为常数,所以这里    可以用一个常数表示。

    在下面第4节会详细讲到的梯度下降法的变种,他们主要的区别就是对样本的采用方法不同。这里我们采用的是用所有样本。

3.3.2 梯度下降法的矩阵方式描述

    这一部分主要讲解梯度下降法的矩阵方式表述,相对于3.3.1的代数法,要求有一定的矩阵分析的基础知识,尤其是矩阵求导的知识。

    1. 先决条件: 和3.3.1类似, 需要确认优化模型的假设函数和损失函数。对于线性回归,假设函数                     的矩阵表达方式为:

          ,其中, 假设函数     为mx1的向量,   为nx1的向量,里面有n个代数法的模型参数。   为mxn维的矩阵。m代表样本的个数,n代表样本的特征数。

             损失函数的表达式为:      , 其中   是样本的输出向量,维度为mx1.

    2. 算法相关参数初始化:   向量可以初始化为默认值,或者调优后的值。算法终止距离   ,步长   和3.3.1比没有变化。

    3. 算法过程:

      1)确定当前位置的损失函数的梯度,对于   θ向量,其梯度表达式如下:

           

      2)用步长乘以损失函数的梯度,得到当前位置下降的距离,即    对应于前面登山例子中的某一步。

      3)确定   向量里面的每个值,梯度下降的距离都小于   ,如果小于   则算法终止,当前   向量即为最终结果。否则进入步骤4.

      4)更新   向量,其更新表达式如下。更新完毕后继续转入步骤1.

           

   

    还是用线性回归的例子来描述具体的算法过程。

    损失函数对于   向量的偏导数计算如下:

           

    步骤4中   向量的更新表达式如下:    

    对于3.3.1的代数法,可以看到矩阵法要简洁很多。这里面用到了矩阵求导链式法则,和两个矩阵求导的公式。

      公式1:     

      公式2:     

    如果需要熟悉矩阵求导建议参考张贤达的《矩阵分析与应用》一书。

 

3.4 梯度下降的算法调优

    在使用梯度下降时,需要进行调优。哪些地方需要调优呢?

    1. 算法的步长选择。在前面的算法描述中,我提到取步长为1,但是实际上取值取决于数据样本,可以多取一些值,从大到小,分别运行算法,看看迭代效果,如果损失函数在变小,说明取值有效,否则要增大步长。前面说了。步长太大,会导致迭代过快,甚至有可能错过最优解。步长太小,迭代速度太慢,很长时间算法都不能结束。所以算法的步长需要多次运行后才能得到一个较为优的值。

    2. 算法参数的初始值选择。 初始值不同,获得的最小值也有可能不同,因此梯度下降求得的只是局部最小值;当然如果损失函数是凸函数则一定是最优解。由于有局部最优解的风险,需要多次用不同初始值运行算法,关键损失函数的最小值,选择损失函数最小化的初值。

    3.归一化。由于样本不同特征的取值范围不一样,可能导致迭代很慢,为了减少特征取值的影响,可以对特征数据归一化,也就是对于每个特征x,求出它的期望        和标准差std(x),然后转化为:

             

    这样特征的新期望为0,新方差为1,迭代次数可以大大加快。

4. 梯度下降法大家族(BGD,SGD,MBGD)

4.1 批量梯度下降法(Batch Gradient Descent)

    批量梯度下降法,是梯度下降法最常用的形式,具体做法也就是在更新参数时使用所有的样本来进行更新,这个方法对应于前面3.3.1的线性回归的梯度下降算法,也就是说3.3.1的梯度下降算法就是批量梯度下降法。  

                             

    由于我们有m个样本,这里求梯度的时候就用了所有m个样本的梯度数据。

4.2 随机梯度下降法(Stochastic Gradient Descent)

    随机梯度下降法,其实和批量梯度下降法原理类似,区别在与求梯度时没有用所有的m个样本的数据,而是仅仅选取一个样本j来求梯度。对应的更新公式是:

                          

    随机梯度下降法,和4.1的批量梯度下降法是两个极端,一个采用所有数据来梯度下降,一个用一个样本来梯度下降。自然各自的优缺点都非常突出。对于训练速度来说,随机梯度下降法由于每次仅仅采用一个样本来迭代,训练速度很快,而批量梯度下降法在样本量很大的时候,训练速度不能让人满意。对于准确度来说,随机梯度下降法用于仅仅用一个样本决定梯度方向,导致解很有可能不是最优。对于收敛速度来说,由于随机梯度下降法一次迭代一个样本,导致迭代方向变化很大,不能很快的收敛到局部最优解。

    那么,有没有一个中庸的办法能够结合两种方法的优点呢?有!这就是4.3的小批量梯度下降法。

4.3 小批量梯度下降法(Mini-batch Gradient Descent)

  小批量梯度下降法是批量梯度下降法和随机梯度下降法的折衷,也就是对于m个样本,我们采用x个样子来迭代,1<x<m。一般可以取x=10,当然根据样本的数据,可以调整这个x的值。对应的更新公式是:

                             

5. 梯度下降法和其他无约束优化算法的比较

    在机器学习中的无约束优化算法,除了梯度下降以外,还有前面提到的最小二乘法,此外还有牛顿法和拟牛顿法。

    梯度下降法和最小二乘法相比,梯度下降法需要选择步长,而最小二乘法不需要。梯度下降法是迭代求解,最小二乘法是计算解析解。如果样本量不算很大,且存在解析解,最小二乘法比起梯度下降法要有优势,计算速度很快。但是如果样本量很大,用最小二乘法由于需要求一个超级大的逆矩阵,这时就很难或者很慢才能求解解析解了,使用迭代的梯度下降法比较有优势。

    梯度下降法和牛顿法/拟牛顿法相比,两者都是迭代求解,不过梯度下降法是梯度求解,而牛顿法/拟牛顿法是用二阶的海森矩阵的逆矩阵或伪逆矩阵求解。相对而言,使用牛顿法/拟牛顿法收敛更快。但是每次迭代的时间比梯度下降法长。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/solar_Lan/article/details/78287840

智能推荐

艾美捷Epigentek DNA样品的超声能量处理方案-程序员宅基地

文章浏览阅读15次。空化气泡的大小和相应的空化能量可以通过调整完全标度的振幅水平来操纵和数字控制。通过强调超声技术中的更高通量处理和防止样品污染,Epigentek EpiSonic超声仪可以轻松集成到现有的实验室工作流程中,并且特别适合与表观遗传学和下一代应用的兼容性。Epigentek的EpiSonic已成为一种有效的剪切设备,用于在染色质免疫沉淀技术中制备染色质样品,以及用于下一代测序平台的DNA文库制备。该装置的经济性及其多重样品的能力使其成为每个实验室拥有的经济高效的工具,而不仅仅是核心设施。

11、合宙Air模块Luat开发:通过http协议获取天气信息_合宙获取天气-程序员宅基地

文章浏览阅读4.2k次,点赞3次,收藏14次。目录点击这里查看所有博文  本系列博客,理论上适用于合宙的Air202、Air268、Air720x、Air720S以及最近发布的Air720U(我还没拿到样机,应该也能支持)。  先不管支不支持,如果你用的是合宙的模块,那都不妨一试,也许会有意外收获。  我使用的是Air720SL模块,如果在其他模块上不能用,那就是底层core固件暂时还没有支持,这里的代码是没有问题的。例程仅供参考!..._合宙获取天气

EasyMesh和802.11s对比-程序员宅基地

文章浏览阅读7.7k次,点赞2次,收藏41次。1 关于meshMesh的意思是网状物,以前读书的时候,在自动化领域有传感器自组网,zigbee、蓝牙等无线方式实现各个网络节点消息通信,通过各种算法,保证整个网络中所有节点信息能经过多跳最终传递到目的地,用于数据采集。十多年过去了,在无线路由器领域又把这个mesh概念翻炒了一下,各大品牌都推出了mesh路由器,大多数是3个为一组,实现在面积较大的住宅里,增强wifi覆盖范围,智能在多热点之间切换,提升上网体验。因为节点基本上在3个以内,所以mesh的算法不必太复杂,组网形式比较简单。各厂家都自定义了组_802.11s

线程的几种状态_线程状态-程序员宅基地

文章浏览阅读5.2k次,点赞8次,收藏21次。线程的几种状态_线程状态

stack的常见用法详解_stack函数用法-程序员宅基地

文章浏览阅读4.2w次,点赞124次,收藏688次。stack翻译为栈,是STL中实现的一个后进先出的容器。要使用 stack,应先添加头文件include<stack>,并在头文件下面加上“ using namespacestd;"1. stack的定义其定义的写法和其他STL容器相同, typename可以任意基本数据类型或容器:stack<typename> name;2. stack容器内元素的访问..._stack函数用法

2018.11.16javascript课上随笔(DOM)-程序员宅基地

文章浏览阅读71次。<li> <a href = "“#”>-</a></li><li>子节点:文本节点(回车),元素节点,文本节点。不同节点树:  节点(各种类型节点)childNodes:返回子节点的所有子节点的集合,包含任何类型、元素节点(元素类型节点):child。node.getAttribute(at...

随便推点

layui.extend的一点知识 第三方模块base 路径_layui extend-程序员宅基地

文章浏览阅读3.4k次。//config的设置是全局的layui.config({ base: '/res/js/' //假设这是你存放拓展模块的根目录}).extend({ //设定模块别名 mymod: 'mymod' //如果 mymod.js 是在根目录,也可以不用设定别名 ,mod1: 'admin/mod1' //相对于上述 base 目录的子目录}); //你也可以忽略 base 设定的根目录,直接在 extend 指定路径(主要:该功能为 layui 2.2.0 新增)layui.exten_layui extend

5G云计算:5G网络的分层思想_5g分层结构-程序员宅基地

文章浏览阅读3.2k次,点赞6次,收藏13次。分层思想分层思想分层思想-1分层思想-2分层思想-2OSI七层参考模型物理层和数据链路层物理层数据链路层网络层传输层会话层表示层应用层OSI七层模型的分层结构TCP/IP协议族的组成数据封装过程数据解封装过程PDU设备与层的对应关系各层通信分层思想分层思想-1在现实生活种,我们在喝牛奶时,未必了解他的生产过程,我们所接触的或许只是从超时购买牛奶。分层思想-2平时我们在网络时也未必知道数据的传输过程我们的所考虑的就是可以传就可以,不用管他时怎么传输的分层思想-2将复杂的流程分解为几个功能_5g分层结构

基于二值化图像转GCode的单向扫描实现-程序员宅基地

文章浏览阅读191次。在激光雕刻中,单向扫描(Unidirectional Scanning)是一种雕刻技术,其中激光头只在一个方向上移动,而不是来回移动。这种移动方式主要应用于通过激光逐行扫描图像表面的过程。具体而言,单向扫描的过程通常包括以下步骤:横向移动(X轴): 激光头沿X轴方向移动到图像的一侧。纵向移动(Y轴): 激光头沿Y轴方向开始逐行移动,刻蚀图像表面。这一过程是单向的,即在每一行上激光头只在一个方向上移动。返回横向移动: 一旦一行完成,激光头返回到图像的一侧,准备进行下一行的刻蚀。

算法随笔:强连通分量-程序员宅基地

文章浏览阅读577次。强连通:在有向图G中,如果两个点u和v是互相可达的,即从u出发可以到达v,从v出发也可以到达u,则成u和v是强连通的。强连通分量:如果一个有向图G不是强连通图,那么可以把它分成躲个子图,其中每个子图的内部是强连通的,而且这些子图已经扩展到最大,不能与子图外的任一点强连通,成这样的一个“极大连通”子图是G的一个强连通分量(SCC)。强连通分量的一些性质:(1)一个点必须有出度和入度,才会与其他点强连通。(2)把一个SCC从图中挖掉,不影响其他点的强连通性。_强连通分量

Django(2)|templates模板+静态资源目录static_django templates-程序员宅基地

文章浏览阅读3.9k次,点赞5次,收藏18次。在做web开发,要给用户提供一个页面,页面包括静态页面+数据,两者结合起来就是完整的可视化的页面,django的模板系统支持这种功能,首先需要写一个静态页面,然后通过python的模板语法将数据渲染上去。1.创建一个templates目录2.配置。_django templates

linux下的GPU测试软件,Ubuntu等Linux系统显卡性能测试软件 Unigine 3D-程序员宅基地

文章浏览阅读1.7k次。Ubuntu等Linux系统显卡性能测试软件 Unigine 3DUbuntu Intel显卡驱动安装,请参考:ATI和NVIDIA显卡请在软件和更新中的附加驱动中安装。 这里推荐: 运行后,F9就可评分,已测试显卡有K2000 2GB 900+分,GT330m 1GB 340+ 分,GT620 1GB 340+ 分,四代i5核显340+ 分,还有写博客的小盒子100+ 分。relaybot@re...

推荐文章

热门文章

相关标签